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Introduction to Self-Supervised Learning



Representation Learning Paradigm Evolution
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What Is Self-Supervised Learning (SSL)?

Self-Supervised Learning (SSL) learns data representations through self-supervised tasks,
and then use the learned representations for downstream prediction tasks. It has been
used in both computer vision [1–3, 11, 12, 17] and natural language processing [7, 8, 10,
15, 16].

There are three common approaches for SSL:

• Generative-Based: learning a bijective mapping between input and representation,
e.g., BiGAN [5, 6], BigBiGAN [4].

• Contrastive-Based: maximizing the alignment between the features of positive
samples, e.g., SimCLR [1], MoCo [12], Barlow Twins [17].

• Pretext-Based: learning the representation via a handcrafted pretext task, e.g.,
predicting image rotations [9], GPTs [14].
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Generative-Based SSL Examples

BiGAN [5, 6]: match the joint distribution between (x, E (x)) and (G(z), z), where E is
the feature extractor and G is the generator.
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Contrastive-Based SSL Examples
SimCLR [1], Moco [12], BYOL [11], SimSiam [2]: match the representations of different
views of the same image.

Image from https://ai.stanford.edu/blog/viewmaker/
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Pretext-Based SSL Examples
Predicting Image Rotations [9]: manually create labels for input images, and then learn
the model as supervised learning usually does.
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Contrastive-Based Self-Supervised Learning



How to Do Contrastive-Based SSL?

Step 1 of 2: Construct similar sample pairs by data augmentation.
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How to Do Contrastive-Based SSL?
Step 2 of 2: Pull the similar sample pairs close to each other in the embedding space
(under some regularization to avoid collapse).

Most contrastive SSL objective can be formulated as

min L(f ) = E
x

E
x1,x2∈A(x)

∥f (x1) − f (x2)∥2 + Lregularization(f ).
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Interesting Observations

1. Sample-level alignment leads to class-level clustering;

2. Stronger data augmentation results in more apparent clustering.

Figure: Embedding Space Learned by Contrastive SSL.
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Main Challenge for Performance Analysis

For contrastive-based SSL, data augmentation is the key to success, since data
augmentation is the only human knowledge injected.

1 How to quantitatively characterize data augmentation?
2 Which kind of embedding space can generalize to downstream tasks?
3 How do the existing methods learn such embedding space?

After addressing the above questions, we can give an explanation for the aforementioned
interesting observations.
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Data Augmentation Modeling
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Data Augmentation Modeling

For a given data augmentation set A, we define the augmented distance between two
different samples as

dA(x1, x2) = min
x′

1∈A(x1),x′
2∈A(x2)

∥∥x′
1 − x′

2
∥∥ .
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Data Augmentation Modeling

Definition 1 ((σ, δ)-Augmentation)

The data augmentation set A is called a (σ, δ)-augmentation, if for each class Ck , there
exists a subset C0

k ⊆ Ck (called the main part of Ck) such that
• P[x ∈ C0

k ] ≥ σ P[x ∈ Ck ] where σ ∈ (0, 1],
• supx1,x2∈C0

k
dA(x1, x2) ≤ δ.

• Larger σ and smaller δ indicate that the augmented data of each class are more
concentrated in terms of the augmented distance.

• For any A′ ⊇ A, dA′(x1, x2) ≤ dA(x1, x2) for any x1, x2. This means that more data
augmentations lead to sharper intra-class concentration as δ gets smaller.

• Given δ, we can compute σ by finding the maximum clique of the graph, where
each node corresponds to a sample and edge (x1, x2) exists if dA(x1, x2) ≤ δ.
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Generalization Bound of Contrastive SSL

Theorem 1 (Main Result)
Assume that encoder f with norm r is L-Lipschitz continuous. If the augmentation used
in contrastive learning is (σ, δ)-augmented, and

µ⊤
k µℓ < r2

(
1 − ρmax (σ, δ, ε) −

√
2ρmax (σ, δ, ε) − ∆µ

2

)
holds for any pair of (ℓ, k) with ℓ ̸= k, then the error rate of downstream classification

Err(Gf ) ≤ (1 − σ) + Rε,

where ρmax (σ, δ, ε) = 2(1 − σ) + Rε
minℓ pℓ

+ σ
(

Lδ
r + 2ε

r

)
and ∆µ = 1 − mink∈[K ]

∥µk∥2

r2 .
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A Simple Example

{
Any two samples from the same class own a same augmented sample (σ = 1, δ = 0);
Each positive pair is embedded to the same point (ε = 0, Rε = 0).

⇒ The samples belonging to the same latent class are mapped to a single point.

⇒ ⟨µℓ,µk⟩
∥µℓ∥·∥µk∥ < 1 is sufficient to separate the latent classes by the NN classifier.
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A Simple Example

In fact, since σ = 1, δ = 0, ε = Rε = 0, according to Theorem 1, we have

ρmax (σ, δ, ε) = 2(1 − σ) + Rε
minℓ pℓ

+ σ
(

Lδ
r + 2ε

r

)
= 0, ∆µ = 1 − mink∈[K ]

∥µk∥2

r2 = 0.

Therefor, µ⊤
ℓ µk/r2 < 1 − ρmax (σ, δ, ε) −

√
2ρmax (σ, δ, ε) − ∆µ

2 = 1.
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Messages From Theorem 1

1 (Alignment of positive samples) It is the common objective that contrastive
algorithms aim to optimize. The good alignment enables the small Rε, which
directly decreases the upper bound of error rate.

2 (Divergence of class centers) The distance between class centers should be large
enough. A good alignment property can loosen the divergence condition.

3 (Concentration of augmented data) The augmented data with sharper
concentration (σ → 1, δ → 0) enable the model to own a smaller upper bound of
error rate.
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Messages From Theorem 1
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Contrastive Loss Functions

• InfoNCE (e.g., SimCLR [1]): pull close positive pairs and push away negative pairs.

LInfoNCE = − E
x,x′

E
x1,x2∈A(x)
x−∈A(x′)

log ef (x1)⊤f (x2)

ef (x1)⊤f (x2) + ef (x1)⊤f (x−) ,

where x, x′ are two random samples and A is the data augmentation set.
• Cross-Correlation (e.g., Barlow Twins [17]): decorrelate feature components.

LCross-Corr =
d∑

i=1
(1 − Cii)2 + λ

d∑
i=1

∑
i ̸=j

C2
ij ,

(
E

[
f (x1)f (x2)⊤

]
→ Id×d

)
where Cij = Ex Ex1,x2∈A(x)[fi(x1)fj(x2)], d is the dimension of encoder f , and f is
normalized as Ex Ex′∈A(x)[fi(x′)2] = 1 for each dimension.
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SSL Loss Functions

The above two losses can be split into two parts:

L(f ) = E
x

E
x1,x2∈A(x)

∥f (x1) − f (x2)∥2 + Lregularization(f ).

• For InfoNCE, we prove that µ⊤
k µℓ ≲ Lregularization(f );

• For Cross-Correlation, we prove that µ⊤
k µℓ ≲

√
Lregularization(f ).

Therefore, Lregularization(f ) controls the divergence.
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Experiments

Augmentations Accuracy
(a) (b) (c) (d) (e) SimCLR Barlow Twins
✓ ✓ ✓ ✓ ✓ 89.92 ± 0.05 83.93 ± 0.57
✓ ✓ ✓ ✓ × 88.41 ± 0.11 83.37 ± 0.43
✓ ✓ ✓ × × 83.62 ± 0.19 73.70 ± 0.99
✓ ✓ × × × 62.91 ± 0.25 49.56 ± 0.11
✓ × × × × 62.37 ± 0.09 48.54 ± 0.29

(a) random cropping;
(b) random Gaussian blur;
(c) color dropping (i.e., randomly convert images to grayscale);
(d) color distortion;
(e) random horizontal flipping.
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Experiments

Stronger data augmentation results in better performance.

Color Distortion Strength SimCLR Barlow Twins
1/8 73.60 ± 0.11 61.13 ± 2.81
1/4 76.25 ± 0.16 68.30 ± 0.15
1/2 78.49 ± 0.09 72.76 ± 1.50
1 82.64 ± 0.57 78.79 ± 0.54
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Experiments
Sharper concentration of augmented data (larger σ when fix δ) results in better
performance.
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Short Summary

• This work gives a mathematical formulation to model the data augmentation.

• This work provably shows that alignment of positive samples, divergence of class
centers and concentration of augmented data are three key factors of
contrastive-based SSL generalization.

• This work proves that SimCLR and Barlow Twins implicitly optimize the first two
factors.

• Experiments verify that sharper concentration results in better generalization.
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Pretext-Based Self-Supervised Learning



What Is Pretext-Based SSL?

Next Word Prediction [14]: use the next word as the label for the given input text.
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Why Does Pretext-Based SSL Work?

Lee et al. [13] prove that pretext-based SSL can effectively reduce the sample complexity
of downstream tasks under Conditional Independence (CI) between the components of
the pretext task conditional on the downstream label.

For example, consider input variable x, pretext label z, and downstream label y are
Gaussian variables.

• If x⊥z | y, the downstream sample complexity can be reduced to Õ(dim(y)).
• Otherwise, the downstream sample complexity gets worse to Õ(dim(z)).
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Can Pretext-Based SSL Be Boosted?
In practice, the CI condition rarely holds, and thus self-supervised learning cannot realize
its full potential.

An interesting question raises:

Can we make the CI condition hold with the help of downstream data
to boost pretext-based SSL?

Figure: Applying a function f such that f (x)⊥z | y.
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The Conditions That f Needs to Satisfy

The following two criteria are essential for a meaningful processor f :

Cov[f (x), z | y] = 0, (C1)

E
∥∥∥y − W ∗

y,f (x)f (x)
∥∥∥2

= min
f ′

E
∥∥∥y − W ∗

y,f ′(x)f
′(x)

∥∥∥2
. (C2)

Here W ∗
y,f (x) ≜ arg minW ∈Rdy×df E ∥y − Wf (x)∥2 is defined as the best linear predictor

of y on f (x).

• (C1) is a conditional uncorrelatedness condition, which is a relaxation of the
conditional independence condition.

• (C2) ensures that applying function f to input variable x does not lose the
information for predicting y.
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Loss Design
We design loss

L(f ; P) ≜ E
(x,z,y)∼P

[∥∥∥y − W ∗
y,f (x)f (x)

∥∥∥2
− λ

∥∥∥z − W ∗
z,f (x)f (x)

∥∥∥2
]

where λ > 0.

Theorem 2 (Rationality of Loss)
Define two sets:

AP =
{

f : f ∈ arg min
f

L(f ; P)
}

,

BP = {f : f satisfies Criterion (C1) and Criterion (C2)} .

Under mild assumptions, there exist a number of population distributions {P}’s such
that every function in AP satisfies Criterion (C1) and Criterion (C2), by choosing a
proper parameter λ, i.e., S ≜ {P : AP ⊂ BP} ≠ ∅.
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Insufficient Downstream Samples Provably Fails
To better understand the role of downstream samples, we consider the following loss

L∞,n0(f , P) ≜ 1
n0

∥∥∥Ydown − W̃downf (Xdown)
∥∥∥2

− λ E
x,z

∥∥∥z − W ∗
z,f (x)f (x)

∥∥∥2
.

Theorem 3 (Model-Free Lower Bound)
Let

A′
P =

{
f : f ∈ arg min

f
L∞,n0(f ; P)

}
,

BP = {f : f satisfies Criterion (C1) and Criterion (C2)} .

Under mild assumptions, if n0 = o(df ), there exists a distribution P0 ∈ S (i.e.,
AP0 ⊂ BP0), such that A′

P0 ∩ BP0 = ∅.
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Remark of Theorem 3

• When n0 = o(df ), even if we have infinite pretext data, the criteria cannot be
satisfied, resulting in that the downstream performance will get worse. Therefore, it
is better NOT to use downstream samples when the downstream samples are
insufficient, as the standard self-supervised learning does.

• We can extend the loss in Theorem 3 to a more general loss.
• We can also provide a more precise model-based lower bound of downstream

sample size.
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Experiments
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Figure: Downstream performance under different hyperparameters on synthetic data.
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Short Summary

We provably answer the question whether we can make the CI condition hold with the
help of downstream data to boost pretext-based self-supervised learning.

• It is better NOT to use downstream samples when they are insufficient, as the
standard self-supervised learning does.

• We provide both model-free and model-dependent lower bounds of downstream
sample size.

• Experiments verify that pretext-based SSL can be boosted with sufficient
downstream samples, but will be hurt with insufficient downstream samples.
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Possible Future Directions

Self-Supervised Learning is key to human-level intelligence.
— Yann LeCun and Yoshua Bengio (Turing Award Winners)

1 Generalization of SSL: Both IID and OOD.
2 Interpretation of SSL: What kind of features do SSL algorithms learn?
3 Robustness of SSL: How to defend SSL model from an attack?
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Thank you!

1 Towards the Generalization of Contrastive Self-Supervised Learning.
Weiran Huang*, Mingyang Yi* (UCAS), Xuyang Zhao* (PKU), arXiv, 2022.

2 Can Pretext-Based Self-Supervised Learning Be Boosted by Downstream Data? A
Theoretical Analysis.
Jiaye Teng* (THU), Weiran Huang*, Haowei He* (THU), AISTATS, 2022.
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